(DFRA-Y .85g)

Model: 2016 CAN-AM Outlander 850 4X4 ATV

1) pkg Aluminum mass rivets

Kit #: DBO 850 Adjustable Kit .Outlander -Stock and oversized tires (up to /including 28")

Components: 1) Dalton Yellow/Red primary clutch spring
3) Dalton adjustable mass flyweights/ levers
1) pkg Gold solid steel mass rivets
2) (DPPS-Y/R)
(Part# DB37-C)
(DFR-Y 3.1g)
1) pkg Black hollow steel mass rivets
(DFRB – Y .2.8g)
1) pkg Olive hollow steel mass rivets
(DFRO – Y 2.1g)

1) includes **Instruction manual** and flyweight set up guide / applications

<u>Description</u>: Better belt grip and improved performance. This one clutch tuning package can optimize CVT calibration for many tire sizes and applications. A specific adjustable flyweight is included for this application to work with the spring provided in the kit. This combination provides for better acceleration and improved backshifting. Holds rpm better under load conditions. Adjustments can be made to the adjustable flyweight lever arms to optimize performance with stock tires or help compensate for oversized tires, terrain conditions, as well as power loss from operating at higher elevations. Flyweight set-up guide is included. There are notes included in this set up guide to add an **optional secondary spring for use with 29.5 and larger tires** in severe mud applications.

Tools: BRP clutch holding tools, torque wrench. (there are critical procedures for proper torquing of clutches together in the BRP service manual. This is a <u>dealer</u> recommended installation.)

WARNING

Read this before installing

Clutch components should only be installed by factory trained mechanics and service personnel with a complete knowledge of snowmobile / ATV Variable Rate Belt Transmissions. Make sure your clutches have been properly inspected for fatigue, cracks, wear, etc. ATV clutches are assembled under spring pressure. DO NOT attempt to disassemble clutches if you are not qualified, serious personal injury could result. This is a <u>performance kit</u> and is intended for the use of <u>Experienced Adult Riders</u>, who are trying to obtain a higher level for racing, etc.

Dalton Industries has no control over the use or misuse of these components and assumes no responsibility for any injury or damage.

Installation Instructions (Dealer)

IMPORTANT: Always remove the key from the ignition when working around clutches.

This is a dealer recommended installation. There are a couple of optional procedures listed in the Can am service manuals for drive clutch removal. The following is only a basic guideline, always consult your dealer service manual.

READ AND UNDERSTAND ENTIRE DOCUMENT BEFORE STARTING TO INSTALL!!

- 1) Remove clutch side floorboard as necessary to gain access to clutch cover shroud. Remove cover bolts and plastic cover to expose CVT clutch system.
- 2) Loosen the center bolt on the primary (motor) clutch, do not completely remove the bolt. There are clutch holding tools and procedures in your Can Am service manual.
- 3) Only the <u>OUTER</u> half (moveable) of the primary clutch will be removed. If it does not pop loose on it's own, <u>hold the outer half</u> of the primary clutch and with a rubber hammer, <u>lightly</u> tap on the side. This will jar the moveable sheave assembly from its taper fit, if it is stuck.
- 4) Remove center bolt and the moveable sheave assembly. NOTE: Keep moveable sheave assembly together as a unit at this time and place it on the work bench for later work. Note: the primary spring and the spring retainer cup on the shaft. Remove the spring and set it away. Leave the SPRING RETAINER CUP on the shaft. (See picture)

- 5) BE CAREFUL when removing the belt to leave the <u>center hub</u> sprage and <u>spring retainer cup</u> all the way <u>IN</u> on the shaft. <u>NOTE DIRECTION OF BELT</u> (arrow) when you remove it. *Make sure belt remains clean & free of any oils / grease, a non-residue cleaner like brake cleaner maybe used to clean clutch surfaces, etc.*
- 6) It is not necessary to remove the belt unless for inspection reasons or replacement. If you remove belt for inspection, use the "driven pulley expander" or a M8 x1.25 fully threaded bolt to spread the secondary pulley sheaves. This allows slack in the belt for easier removal. A fully threaded bolt of 75mm length can be used.
- 7) Be certain belt is clean of any dirt, oil, or residue. Clean the belt in warm soap and water, rinse and air dry if necessary and re-install.
- 8) ** Installing belt. Examine belt for inspection or replacement (flat spots on edge from burning on take off or holding brake etc)
- <u>CAREFULLY</u> install the belt around the rear clutch and center hub of the front clutch. There is a threaded hole in the secondary clutch that can be used to spread the sheaves of the secondary. Can Am technicians have a special bolt "driven pulley expander". This will assist in letting the belt down into the secondary and make reinstalling the belt easy. This hole is a M8 x 1.25 . A FULLY threaded bolt of approximately 75mm length can be used.
- Make sure belt and clutch surfaces are CLEAN! A <u>non-residue</u> cleaner like brake cleaner (not lube products or carb cleaner) if necessary for sheaves.
- Note direction arrow on the belt.
- New belts should be first washed with hot soapy water to remove mould release residue, then rinsed thoroughly.

** The Factory Can Am belt is the best belt for this vehicle. As much as we would like to recommend a cheaper priced alternative, the factory belt is superior and recommended for this application. In fact the components in this kit and the "set up guide" are calibrated to this belt compound. The drive belt is a CRITICAL component in tuning this vehicle.

CHANGING PRIMARY COMPONENTS:

- A) With the primary assembly still together, use a marker to show orientation of spider for reassembly (Fig# 2&3)
- B) With the primary moveable assembly on the workbench (spring side down) carefully lift spider assembly out of the moveable sheave. ATTENTION: Be careful not to lose the plastic sliding buttons that will be exposed on the sides of each finger of the spider, as you lift it out. Keep the spider flat and horizontal (as not to lose the plastic buttons) and sit it aside gently. If any of these plastic slide buttons are damaged, replace them.

C) VERY IMPORTANT: CAN-AM ATV drive clutch has places for 6 flyweights. On this 850cc Outlander model all 6 positions are filled, and as many of you know (CAN AM service techs) there are other Can Am models with only 3 or 4 of the positions filled and some are not used at all. Example: Outlander 400 has only 4 flyweights.... With 2 of the 6 positions empty (180 degrees opposite each other). Some models only use 3 positions.

In this case, we will be removing and replacing only <u>3</u> of the flyweights and leaving 3 of the stock ones intact. In fig #4 you can see that <u>3 of the stock weights are still in the assembly</u> and has <u>3 Dalton adjustable flyweights</u>.

The 3 stock and 3 adjustable weights are alternating. The 3 stock are 120 degrees apart, as are the 3 new ones. – Every second one is replaced. THIS IS THE ONLY CONFIGURATION THAT 3 WEIGHTS CAN BE REPLACED.

It is well known in the snowmobile racing world, with 4 and 6 weight Drive clutches, that weights are often mixed. <u>but</u>, it must be: a) evenly spaced (every second one or 120' apart) or b) Directly opposite each other (180' apart) with the same weights.

D) After setting up the provided flyweights properly for your application (* See attached "flyweight set – up" for recommended application), install the new

flyweights into the clutch and secure the pins / nuts the same way as they were removed. Be certain to put metal washers back in place (one each side of flyweight) before putting the pin through the weight. Carefully slide the spider assembly back down onto the moveable sheave assembly, making sure the plastic buttons are still in place properly and the spider is in the CORRECT POSITION with ROLLERS over each flyweight and the marks you made in the correct position.

With the moveable sheave / spider assembly back together, keep it together and re-install as a unit, along with the new <u>primary spring</u>, then install the whole unit and *torque the primary (*89 ft lbs)

IMPORTANT

*This outer moveable sheave /spider assembly attaches to the clutch via a set of matching tapers. Be certain the tapers are clean and dry (only use non-residue cleaner like brake cleaner,never lube or oil). It is critical that you torque the primary assembly properly. The male and female tapers must be a CLEAN and DRY fit so they can lock together properly.

<u>Torque at 89 ft/ lbs.(+/- 6 lbs)</u> Do NOT guess or make assumptions here, you want good lock up.

- 9) Re-install plastic cover shroud, **Note:** Be certain that the cover gasket is properly in place and use caution not to cross thread the cover bolts.
 - Carefully inspect all wires, clamps, etc during re-assembly.
 - -re-install console panels, seats, etc.

* FLYWEIGHT SET-UP (DBO 850 clutch kit)

The following set ups are for use with the spring/s and components supplied in this kit, and those components in this 850cc configuration. The total "grams" are only relative to components supplied. These mass adjustable flyweights in this kit have a profile, location of mass, and base weight that was designed for the spring rates and adjustable flexibility in this application.

Note: The primary spring supplied in this kit is color coded Yellow/Red. The primary spring is the principal control of the "engagement rpm", although it has other pressure characteristics as the opposing force to the flyweights.

850 Outlander

<u>All Stock size and up to 28" TIRES</u> - USE STOCK SECONDARY SPRING, THE PROVIDED PRIMARY SPRING, AND THE FOLLOWING FLYWEIGHT SET UP: (Go by <u>tire size</u> and then read notes).

Stock tires and all 26" tires

Use 2.8g Black hollow steel rivet **

- when using primarily in sand, or when operating mostly in the range of 4000'- 6000' elevation use .85g aluminum rivet.
- if vehicle is primarily above 6500' elevation run flyweights empty.

All 27 - 28" tires

Use 2.1g Olive hollow steel rivet **

(if using primarily in sand application or when above 4000' elevation use flyweight empty.)

USING THE OPTIONAL SECONDARY SPRING DPSS-B/V - First and foremost, DO NOT use the optional <u>secondary spring OR the instructions</u> below <u>unless you require it</u> and have the optional Black /Violet secondary spring.....More parts is not always better, applications that require its use are well laid out **on our website.**

OUTLANDER 850

29.5" AND LARGER TIRES - Using Optional Black/Violet Secondry Spring for extreme large tires

* secondary center bolt has torque spec of <u>15 ft/lbs + 180 degrees of rotation</u> - attach degree wheel to torque wrench. Be sure to see instructions for installing the DPSS-B/V (included with the B/V spring). This bolt in the secondary is a "torque to yield" (stretch bolt) that should be replaced if removed. Use BLUE removeable thread locker on the threads when installing the new bolt.

- For 29.5, 30" Tires Use 3.1g solid rivet with optional Black/Violet secondary spring (part# DPSS-B/V)
- For 31 32" Tires Use 2.1g hollow steel rivet with the Black /Violet.
 - ** For Installation and removal of Mass Rivets see following page

Modified machines and other options

Clutch tuning has a lot of variables. There is no way to cover every exact situation, as there can be many variables. Things like SAND, and MUD are not even the same to everybody because different regions have different terrain types. That is one of the nice features of adjustability. Even tire size and weight can vary by brand.

Mods - Typical performance modifications like high flow filters, slip on pipes, etc quite often are not enough difference in engine characteristic to require different CVT calibration from the suggested settings. There are, however, some things that can require major changes. CAMSHAFTS of long duration, etc.. In those situations, you may need to test. It is best to have all possible manufacturer info for the mods.

INSTALLING AND REMOVING MASS RIVETS

- 1) Push the rivet ALL the way through the hole in the flyweight. (remember to keep all rivets same direction)
- 2) Using a LARGE shop vise, hold the rivet in a manner that keeps the rivet all the way through the hole so that you will be expanding the part that protrudes from the other side.
- 3) Squeeze/expand the rivet using strong pressure on the vise. Once the rivet expands "tight in the hole" it will flare larger on the end it will not move.

For later removal of rivets if desired, use the following procedure:

- 1) Mark lightly the center of the flush side of the rivet with a center punch.
- 2) Using a 3/16" drill bit, drill approximately **half way** into the rivet.
- 3) Make certain that the flyweight is SUPPORTED all around the rivet before trying to drive out the old rivet. A hole in a steel surface or a large vise that is slightly open (close to the rivet) is good support for the flyweight.
- 4) Insert a flat ended punch with a <u>smaller diameter straight shaft</u> than the drilled hole (1/8" straight shaft punch) and tap the rivet right through the hole.

Read the following pages before operation!

It is a huge benefit to the vehicle operator to understand the CVT system on this vehicle. Both for the function of the belt, the tuning components and the limitations and proper use of the drive system.

Can Am 850 - General Overview and CVT (Continuously Variable Transmission)

Clutching, belts, and potential problems.

The new Can am 850 has excellent hp in stock form. This vehicle has plenty of power, along with very tall final drive gearing making it capable of reaching very high top speeds. Because of this combination, the potential is here to aggressively overheat belts, particularly when operating at LOW SPEEDS in HIGH RANGE. **Any time this vehicle is operated at low speeds it should be in LOW range**.

Some operators, who may be simply uninformed, may state things like.... "It has all kinds of power and I should be able to leave it in high!" Although that may sound logical, it is simply not so. This is not a hydrostatic or oil pressure automatic, nor is it a wet clutch type of CVT. This is, like some other brands, a system that engages the belt each time the vehicle is required to move. With this type of system, it is important to understand the way the system functions, so you can maximize FUN and avoid belt problems.

The important thing to know here is that in LOW range the belt travels farther up the clutch at a given speed. For example, if you are riding at 10 mph in HIGH, the belt may still be very low in the primary clutch (close to the hub). If you switch to LOW range and travel the same mph...the belt rides up at a higher point on the primary clutch, offering MUCH more belt grip and substantially lower belt temperature. When going slow, use low. This is fact, and this simple fact, if not understood, can aggrevate the belt wear, and temperature dramatically.

Another mistake that is sometimes done is to hold the brake and rev up the engine past engagement. This will only burn a flat spot on the drive belt and make it unuseable. This should not be done on this type of system.

When straying from normal tire sizes and trail operation to other surfaces like mud and sand, it can become increasingly important to have proper clutch calibration to help compensate for the changes. Clutch calibration does one main thing...it changes the rate of shift of the belt. The way to help eliminate unnecessary slippage (and thus heat) is to have the belt in the correct ratio on the pulleys for the loads present. We can manipulate that shift pattern with clutch tuning components.

You cannot make tires that are too big (and mess up the final drive ratio even more) smaller, or the sand dunes flatter or more firm. with less rolling resistance. However, by calibrating clutches we can help to compensate and make these situations easier on the drive belt and improve vehicle performance.

Clutch tuning

Before setting up and installing your clutch kit, take a moment to read a bit of basic clutch tuning theory. CVT tuning can get very involved and there are books written on theory of operation itself. There are various ways to change the way the system reacts from changing or altering the tuning components (spring rate, flyweights, etc). Flyweights alone can be a long discussed topic, as on a flyweight type system, the curvature, distribution of mass, etc can dramatically change shift characteristics. Many inexperienced tuners often make the mistake of comparing flyweights by "grams" alone. If the curvatures, profile, and location of mass are not the same,...then the "grams" are irrelevant. We have tested and developed various flyweights for this model during testing, and the chosen curvature and mass locations, as well as the adjustability were the result. Following is a basic overview to help you understand if you are unfamiliar with cvt function.

Changing CVT tuning components is done for many different reasons, but the thing that you are doing is ultimately **changing the rate of upshift and back shift of the belt** in the pulley system. The factory sends the machine with a calibration that they feel is a "all around" set up.

Many owners of ATV's and UTV's have a desire to re-calibrate the clutch system more specifically to their needs based on their own usage and situation. Common reasons are racing, oversized tires, altitude, mud running, or towing. For instance, if you are a fan of mud and big tires, it is obvious that the taller final drive ratio from installing the tires changes things. With larger tires and more rotating weight, the last thing you would want would be to upshift too quickly and kill the rpm too rapidly, so you want that initial upshift to be slower. If you install tires much larger than the acceptable envelope that the manufacturer recommends, you can easily burn belts.

CVT tuning components can't change the actual gear ratio resulting from the bigger tires. But by re-calibrating the cvt drive system, you can often change the shift pattern to help get better results for your application. It will hold its correct rpm better by properly shifting on its own to the proper belt ratio as it comes under load (backshifting) If you were to install larger tires and your machine was still upshifting quickly (like you can get away with with small stock tires) it would lower the rpm lower than the peak hp rpm and performance would suffer. The belt would also not be in the proper ratio for the loads present with the bigger tires resulting in more slippage and heat....causing delamination and failure of the drive belt.

It is also very **important to remember** that cvt tuning parts only control the rpm during the **"clutching phase"** The clutch phase is when the **belt** is going from low ratio to high ratio on the clutch pulleys. ATV's and UTV's are not like snowmobiles,...on ATV's / UTV's the "**clutch phase**" is over in a distance of approximately 500 ft on a full throttle run. Once the belt is to the top of the primary clutch, it is to the top, and clutch components no longer control the rpm after that point. After that "fully shifted" point (with stock tires on hardpac) the engine will often start to overrev but it is because the belt can shift no farther to control the rpm. It is important to remember that clutch components are not the controlling factor for rpm after that belt is fully shifted. For clutch RPM testing it is good to use short distances (300 ft- 400 ft) to determine clutch rpm. **Dalton adjustable flyweights** help make it flexible.

The Components

<u>Flyweights</u>- Flyweights are the principal item to control rpm during the clutch phase. *Heavier weights* upshift *faster* and *lower* the rpm. *Lighter* weights upshift *slower* and thus *increase* rpm during the clutch phase. It is NOT that lower, or higher rpm is better. Ideally, you want the clutch calibrated to shift the belt at the correct rate to hold the rpm at the <u>rpm that the engine makes best HP*</u>. If an engine makes peak hp at 7150 RPM, then having it calibrated to run at 7600 is probably much worse than if set up to run at 6900, as many crankshaft engine dynos will easily prove. The proper amount of flyweight mass is determined by both the **other cvt tuning components being used**, the **given situation** or intended use of the vehicle and ultimately the **field tested results for best efficiency for the situation** at hand.

* 850 Outlander operates best at 7000-7300 RPM

Primary Springs- Primary springs have some overlapping uses. The springs are usually compared by using their pressure load rating at two intervals. The *first load rating* is often referred to for *engagement* (stall rpm) first load number on a primary spring is the principal component to control engagement rpm.

The fully compressed or *second load rating* is used as the principal *opposing force to the flyweight*. Stronger fully compressed load ratings are a factor in how much flyweight mass you can run. You can often switch from one primary spring to another and leave flyweight mass the same if the second load rating on the springs are within the same zone and have minimal effect on top rpm. This is useful for those who like to experiment with engagement rpm. Engagement rpm is a personal preference.

It is very important to realize that springs have different characteristics when used with other different components. The springs in this clutch kit may engage at very different rpm when used with other flyweights, etc. The primary spring in this kit:

```
STOCK 850 primary spring engages at approx. *1700 rpm Yellow/Red (included) engages at approx. *1950 rpm
```

Secondary Springs- Secondary clutch springs are a component that has some overlapping features. Its principal function is torque feedback sensing, that is, that it initiates backshifting of the belt to proper ratio to maintain rpm. The secondary, however does have effect on upshift characteristics as well. CVT's are about efficiency. Proper balance of components for efficiency is the way to good belt life. The key to preventing slippage is having the belt in the correct ratio at the right time. For the Outlander 850 the stock secondary is the best and most suitable for most typical use, however, when operating (only) with 29.5" and larger tires, there is benefit to adding the optional Black/Violet Secondary spring part # DPSS-B/V. (and adjust flyweights according to the above "flyweight set up" guide).

Thank you for choosing Dalton Industries!

For other model info and tech support visit our website at daltonindustries.com

^{*} there is some variance in engagement based on total flyweight mass, belt wear, etc. but the Primary SPRING is the principal control of engagement rpm. The combination in this kit, although slightly higher rpm engagement, is a more smooth , positive engagement of the belt.